Data Anonymizer

Anonymize sensitive data while preserving format and utility

Back to Tools

Select Mode

Data Input

Enter text, CSV data, JSON, or any other structured data

Anonymization Options

Keep the same format but with anonymized values

Custom Patterns

Use regex patterns to identify custom sensitive data

Data Anonymization Information

What is Data Anonymization?

  • Process of removing or modifying personal identifiers
  • Protects privacy while preserving data utility
  • Essential for GDPR and privacy compliance
  • Enables safe data sharing and analysis

Anonymization Techniques

  • General: Email, phone, credit card, SSN
  • PII: Names, addresses, ZIP codes
  • Financial: Account numbers, amounts
  • Medical: Patient IDs, medical records

Best Practices

  • Test anonymization on small samples
  • Preserve data format when possible
  • Use appropriate techniques for data type
  • Regularly review and update patterns

Data Anonymization Tips

Privacy Protection

  • Remove all personal identifiers
  • Use consistent anonymization
  • Test for re-identification risks
  • Document anonymization process

Implementation

  • Choose appropriate anonymization type
  • Preserve format for data utility
  • Use custom patterns for specific needs
  • Validate anonymization results

Quality Assurance

  • Test on sample data first
  • Verify no sensitive data remains
  • Ensure data remains useful
  • Regular security reviews